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Chapter 5: How Formal Logical Systems Differ 

Logic for Serious Database Folks Series  

by David McGoveran, Alternative Technologies 

“Whatever Logic is good enough to tell me is worth writing down...” – Lewis Carroll 

I. INTRODUCTION 

As you might have guessed by now, there are many ways in which the components of formal 

systems, in general, and of formal logical systems in particular, can vary. Any two formal logical 

systems that differ in how their components are defined will typically not be equivalent in terms 

of their power (defined formally below): either the deductions possible or the subjects that can 

interpret them will differ, possibly both.  

How a formal logical system is defined (or constructed) determines its characteristic properties, 

called meta-mathematical properties. A formal logical system, or some element within it, must 

be proven to have any particular meta-mathematical property. For simple properties, this is 

trivial and is largely a matter of inspection. For more sophisticated or subtle properties, a formal 

proof must be given. Such proofs are given in a metalanguage that is necessarily at least as 

expressively powerful (a term defined below) as the system’s object language and quite possibly 

more powerful. Of special interest are those properties that can be proven using the system’s 

object language as the metalangauge. We often say that such properties are then “provable 

within the system.” 

Meta-mathematical properties have many consequences.  Relative to some other system, a 

formal logical system may be any or all of, for example:  

(i) easier or more difficult to understand, 

(ii) better or poorer for representing aspects of some subject, and, 
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(iii) better or poorer for formal, automated reasoning.  

 

Even more important for implementing a computer software system (such as a DBMS and its 

query language) based on a formal logical system, the definition of the formal logical system 

chosen is crucial:  

 

(iv) some formal logical systems are reliable (in some specific formal sense), while others are 

not, and,  

 

(v) for some formal logical system, algorithms exist for testing certain properties while no 

such algorithm is possible in other systems.  

 

The first three characteristics cited above, (i), (ii), and (iii), also have important consequences for 

the practice of designing a database intended to represent some system in the physical world (a 

kind of subject). As discussed in a previous article, representing a subject in terms of a formal 

logical system so that the system faithfully describes that subject requires care. One must 

identify which elements one wishes to consider the primitive elements of the subject and from 

which the rest of the representation will be constructed. The remaining elements of the subject, 

including relationships and complex entities, are then understood as being combinations of these 

primitive elements.  

 

If the formal logical system is not powerful enough, it may not be able to represent all the 

primitive elements or their combinations. If too powerful, the system may “overstate” the 

subject, leading the user to deduce the existence of abstract constructions or relationships that 

have no correspondence in the subject.  

 

In short, both situations are undesirable and exemplify “bad interpretation”. Of course, when 

applied to the problem of database design, these situations imply that choices must be made in 

the processes of conceptual modeling and logical modeling to enable proper correspondences 

between the subject and the formal logical system. As we shall see, database design is a 

(typically iterative) process of, on the one hand (a) delimiting a subject to selected elements 

designated as either primitive or non-primitive, and determining how elements of the subject are 

inter-related; and (b) selecting a fragment of a formal logical system such that all and only the 

selected elements and relationships found in the subject are represented by that fragment and that 

the representation is faithful to the subject. The former is a matter of application scope, while the 

latter is a matter of identifying an appropriate formal logical system. Altogether, this is a process 

of making trades-off intelligently. If the formal logical system is insufficiently powerful for the 

purpose, then either another, more powerful, system must be selected (or defined) or the original 

subject must be delimited differently possibly excluding certain elements or relationships as 

being out of scope.  

 

This sounds like a straightforward, if complex, process. Unfortunately, there exists a “gotcha.” 

Certain properties of formal logical systems determine the characteristics (iv) and (v) cited above 
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in unexpected ways. It turns out that, in general, the more powerful the formal logical system, 

the less likely that the system will be reliable (in certain precise senses to be defined more 

formally below) and the less likely for there to exist algorithms that can identify certain desirable 

properties (again, to be more formally defined below). Thus, the choice of a formal logical 

system (whether explicitly or implicitly as a consequence of other choices) is of paramount 

importance. To understand this issue, we have to understand the properties that differentiate 

formal logical systems, what affects them, and at least some of their consequences. 

 

Interestingly, one of the most powerful formal logical systems is that which underlies most (if 

not all) so-called general purpose programming languages. Such languages are Turing complete 

(TC), also known as computationally complete. For the moment and very simplistically, we can 

think of a TC language as one that can express any procedure implementable on a computer. It is 

because their expressive power is so great that software developers must test their programs for 

logical correctness
1
 and still miss “bugs”: there can be no algorithm that will test any 

conceivable program written in a TC language for logical correctness.  

 

It is tempting to simply blame the programmer for making errors and, if humans were infallible, 

that might be reasonable. However, if a general purpose algorithm for finding errors were 

possible, then the programmer could that use that a program that implemented that algorithm to 

identify errors in whatever code was written, and the programmer could then fix them. Of 

course, custom test programs and “test suites” can be written to check any specific program, and 

tools exist for making this as easy as possible. In my experience few programmers understand 

that the source of the need to laboriously design, develop, and test software for logical 

correctness lies in the power of the logical system underpinning TC languages. In a sense, the 

extraordinary power of TC languages is the cause of every software bug you’ve ever seen or 

heard about.  

 

In this article, we will identify the properties that can differ among of formal logical systems in 

an organized fashion and discuss some of the consequences of those differences. In later articles, 

we will use this knowledge to make informed choices in database theory and practice.
2
 

 

Our task in this article is non-trivial for several reasons. First, the terminology for properties of 

formal logical systems as found in the literature is not universal. The meaning of a term may 

have changed over time, different authors may use the same term to mean different concepts, 

terms may be used in a specialized way in the context of some particular system, and so on. 

More difficult to sort out, sometimes renowned logicians simply disagree. 

 

Ideally, we could provide a kind of standard glossary of terms that would allow the reader to 

                                                 

 
1
 Not only must a program meet perform the desired functions as given by functional requirements (however 

collected), it must do so in a logically correct manner. 
2
 These considerations are applicable to any effort involving knowledge discovery, representation, and reasoning in 

general, database theory and practice being just one exemplar. 
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read and understand the literature unambiguously. Sadly that is not possible. In what follows, I 

have attempted to rationalize the lexicon using several complementary strategies. Where 

possible, I have attempted to provide generalized definitions with guidance to the reader as to 

how to specialize that definition when applying the term to a particular logical system. Where 

unqualified terms are used ambiguously in the literature, I have attempted to remove the 

ambiguity by qualifying the term before providing a specific definition. Finally, I have provide a 

framework for categorizing properties. 

 

Broadly and somewhat informally, metamathematical properties may be grouped into two 

categories. The first category consists of properties that pertain exclusively to the Deduction 

Subsystem and are proof theoretic. We will further divide these into structural properties and 

syntactic properties. Structural properties pertain to individual components of the Deduction 

Subsystem including, for example, vocabulary, axioms, and inferences rules. Structural 

properties are definitional. By contrast, syntactic properties are consequences of those structural 

properties, possibly in combination and in terms of how they may be used. Syntactic properties 

must be shown by meta-theoretic proof to apply to the formal logical system. 

 

The second category consists of properties that pertain exclusively to the Interpretation 

Subsystem and are model theoretic. We will further divide these into structural properties and 

semantic properties. Model theoretic structural properties pertain to individual components of 

the Interpretation Subsystem including, for example, differences in the number and type of truth 

values, and in the evaluation procedure. Structural properties are, again, definitional. By 

contrast, semantic properties pertain to interpretations of the formal deductive language. 

Semantic properties must be shown by meta-theoretic proof to apply to the formal logical 

system. 

 

For certain model theoretic properties, a formal logical system is said to have the property if and 

only if it meets the definition of the property for all permissible interpretations. Since the 

semantics implied by any particular interpretation can have no effect, such properties are 

sometimes considered to be syntactic rather than semantic. However, such properties assume the 

existence of interpretations and are impossible to define without them: the system must be 

interpretable. For this reason we will include them in the category of semantic properties. 

Certain other model theoretic properties pertain to special relationships that arise between the 

Deduction Subsystem and the Interpretation Subsystem. As we will see, properties in this latter 

group are among the most important because they tell us what, and what not, to expect of the 

formal system. 

 

I have chosen the foregoing categorization both for pedagogical reasons and in order to 

emphasize the importance of distinguishing proof theory on the one hand from model theory on 

the other. Proofs are constructed according to the axioms and rules of inference of the logical 

system. Proof theoretic properties may be said to be purely syntactic in the sense that they do not 

rely upon any specific interpretation, on the existence of some interpretation, or even on all 

permissible interpretations. Interpretations and evaluations are constructed according to meaning 
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assignments, truth assignments, and the evaluation procedure. Every model theoretic property 

relies upon the nature of interpretations in some manner: either every permissible interpretation 

will induce or have some defining characteristic of the property, or at least one interpretation 

exists that induces or has the defining characteristic of the property.  

 

Other ways to categorize properties are sometimes used. For example, some authors differentiate 

system properties (properties that pertain to the system as a whole) from wff properties 

(properties that pertain to a particular wff or set of wffs). In some cases, the definition of a 

system property requires that a set of wffs (sometimes all wffs) have some wff property or 

properties. We will point these distinctions out from time to time. 

 

 

This article can serve as a reference for the hard work to come when we characterize and 

compare certain specific formal logical systems such as propositional logic, first order predicate 

logic, second order predicate logic, lambda calculus (and other computationally complete 

systems), and many-valued logics. I suggest reading this article through a few times to gain 

familiarity with the described properties’ definitions, their interrelationships, and their 

categorization. Then, as you read subsequent articles in this series, I suggest keeping this article 

handy as a reference. 

 

Some General Concepts 
 

When characterizing formal logical systems, we shall often find it helpful to characterize the sets 

of a system’s components, especially the size (in particular, the cardinality). Before we dive in
3
, 

the following terms will be helpful (either in the present article or a future article): 

 

 countable – A set is countable if its members can be put in a one-to-one correspondence with 

a subset of the natural numbers {1, …, n}. 

 

 finite – A set is finite if its members are countable, with the penultimate correspondence n 

being to a specific natural number when counted. 

 

 infinite – A set is infinite if its members are not finite (i) being not countable or (ii) being 

countable but there being no “penultimate correspondence”. 

 

 denumerable a.k.a. countably infinite – A set is denumerable (countably infinite) if its 

members are countable, but not finite (there being no “penultimate correspondence”). For 

example, the set of integers is denumerable. 

 

                                                 

 
3
 For further discussion of set theory see the second article in this series “Set Theory and Meta-Language”. 

http://www.alternativetech.com/
mailto:mcgoveran@AlternativeTech.com


 

Copyright ©2014-2016 Alternative Technologies, All Rights Reserved Page 6 
www.AlternativeTech.com  mcgoveran@AlternativeTech.com 

DRAFT Chapter 05 – March 23, 2016 
Post Office Box 4699, Deerfield Beach, FL 33442             Telephone: 831/338-4621 

 non-denumerable – An infinite set is non-denumerable if its members cannot be put into one-

to-one correspondence with the natural numbers. For example, the set of real numbers is 

non-denumerable. 

 

Certain properties of sets or their members apply to numerous structures relevant to formal 

logical systems.  

 

 bounded –  A numeric characteristic of a set, possibly part of its specification, is bounded if 

it is has either a least (minimum) or a greatest (maximum) value. For example, a set such as 

“the real numbers greater than 10” is infinite but bounded from below because it has a 

minimum member. 

 

 sequence – A sequence is an ordering of objects called the terms of the sequence, the same 

object possibly appearing as multiple terms. A sequence of n terms is called an n-tuple. 

 

 enumeration – An enumeration of a set S is a finite or denumerable sequence Sn in which 

every member of S is a term and every term of Sn is a member of S.  The members of S may 

appear in Sn multiple times.  

 

 enumerable – A set S is enumerable if there provably exists at least one enumeration Sn of S. 

 

 effective procedure – A procedure (a.k.a., a method) is effective if, when followed correctly 

and for as many steps as necessary, provably produces a correct answer after completion of a 

finite number of steps. The precise number of steps need not be predictable. 

 

 effective enumeration – An enumeration Sn is an effective enumeration if there provably 

exists an effective method for finding the n
th

 term of the Sn. The method need not be known. 

 

 primitive element – An element is described as primitive if and only if it has no identified 

components and is not subject to analysis (whether by fact or fiat). For any set S of elements 

and a set of prescribed methods M for combining or modifying elements into new elements, 

a subset S1 of S may be designated as primitive, meaning those elements are a priori not a 

combination of any other elements. Notice that what constitutes a primitive set is a matter of 

choice and not an inherent property: any one subset, but only one, may be designated as 

primitive. 

 

 derived element – An element is described as derived if and only if it is the result of a 

method, either directly or indirectly, applied to primitive elements. Typically the concept of 

being derived will be qualified by the permissible methods by which such elements may be 

obtained. 

 

Notice that, for any non-empty set S of elements and a set of prescribed methods M on those 
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elements, S may be partitioned into two disjoint subjects: one whose members are designated as 

primitive elements and one whose members are derived - derivable from primitive elements by 

the set of methods M. The set of derived elements may be empty, but the set of primitive 

elements cannot. 

 

 independent – A subset S1 of a set S of elements is characterized as independent if it is 

impossible for any particular element in the subset S1 to be expressed or defined as the result 

of a some combination of methods in M on the other elements of S. Typically the concept of 

independence will be qualified by the means by which such combinations may be obtained. 

For any subset S1 of S and any method (or methods) of combining elements into new 

elements, S1 is said to be an independent set if and only if each of those elements cannot be 

a result of some combination of prescribed methods on any other elements in S.  

 

 minimal – A set of elements is minimal with respect to a property (e.g., being composed of 

primitive elements) if and only if no other set of the type has smaller cardinality and still has 

the property of independence.  

 

Unqualified (vs. Qualified) Terms 
 

Many terms used in the study of logic and metalogic, and those referring to the properties of 

formal logical systems, are ambiguous when used without qualification. In many cases, there 

exist both a syntactic concept and a semantic concept that share the same unqualified name. In 

some cases, there are multiple unrelated properties that share the same unqualified name, 

perhaps as a result of historical accident as the study of logic evolved. As a result, it is crucial to 

use qualified names for properties or, if qualifications are not used, that the context makes it 

clear what that qualification would be. Unfortunately, the assumed context can be obscure in the 

literature and so the reader must be extremely cautious (especially when quoting or relying on 

some authority).  

 

Often, there is no uniformly accepted method of determining whether or not a system or a wff 

has some general property, possibly because there is disagreement as to how the general concept 

should be made precise. It has become common practice to define only those variants of the 

general property that can be made precise, and to refer to these variants with qualified names. 

 

One of the most fundamental concepts of logic is the validity of a wff. Most readers will have 

some intuitive sense, not necessarily of validity, but of invalidity – a sense that “something is not 

right.” Unfortunately, “valid” is often erroneously thought to mean “true.” The distinction 

between the concepts of “validity” and “truth” is essential to an understanding of formal logical 

systems. Be that as it may, there is no uniformly acceptable method of determining whether a 

wff is valid in a general sense.  Instead, we define validity in more narrow senses, including 

syntactic validity and semantic validity (a.k.a., logical validity). 
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Most of this article is devoted to defining qualified terms for properties. However, it will be 

helpful for the reader to be aware of, and have a sense of, certain important but ambiguous, 

unqualified terms.  Among the important unqualified property terms (in bold and italics) are: 

 

 power – By a system’s power, we mean a measure of an intrinsic capability of the system. A 

system’s power is often given relative to that of some system of known capability. System 

power can refer to either the system’s intrinsic deductive power or its intrinsic expressive 

power. 

 

 equivalence – By an equivalence property, we mean a measure shared by two systems, 

inference rules, operators, or wffs so that the two may be judged equivalent with respect to 

that measure. The measure may identify deductive, expressive, truth functional, or semantic 

capabilities. 

 

 validity – A wff f (or inference ending in f) is valid with respect to some property if the wff f 

obtains in some specified sense when that property holds. A valid wff or inference can be 

valid with respect to provability (a.k.a., syntactic validity) or valid with respect to 

satisfiability (a.k.a., semantic validity or logical validity). 

 

 entailment and consequence – A set S of wffs entails a wff f (alternatively, the wff is a 

consequent of a set of wffs) if the wff f follows from that set S of wffs in some specified 

way. Consequence can be either logical consequence or semantic consequence. 

 

 soundness – By a soundness property, we mean that a system or a set of inference rules 

preserves some specified property. The system or set of inference rules is then said to be 

sound with respect to the specified property. Otherwise the system or set of inference rules 

is said to be unsound (with respect to the property). Typically, soundness refers to 

soundness with respect to semantic validity. Notice that a wff is sound with respect to 

provability if it is provable, and a set of inference rules is sound with respect to provability 

by definition. 

 

 consistency – By a consistency property we mean that at most certain wffs (i.e., those that 

have a particular property – such as of validity – see below) are provable. In other words, the 

particular property is a necessary, but not sufficient, condition for provability. A formal 

logical system is then said to be consistent with respect to the particular property. 

Otherwise the system is said to be inconsistent (with respect to the property). Consistency 

can be proof theoretic (a.k.a., p-consistent or negation consistent), relative, absolute, relative, 

or model theoretic.  

 

 completeness – By a completeness property, we mean that at least some wffs (i.e., all those 

that have a particular property – such as validity – see below) are provable and therefore are 

theorems of the system. In other words, the particular property is a sufficient condition for 

provability. A formal logical system is then said to be complete with respect to the 
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particular property. Otherwise the system is said to be incomplete (with respect to the 

property). Completeness can be expressive, truth functional, deductive (a.k.a. with respect to 

provability, syntactic, or maximally), strongly, negation, refutation, or semantic.  

 

 decidability – By a decidability property, we mean that it is provable that an effective 

procedure exists that can determine (i.e., decide) whether any specific wff of the system  

either has or does not have the specified property. A formal logical system is then said to be 

decidable with respect to the particular property. Otherwise the system is said to be 

undecidable (with respect to the property). Decidability can be with respect to provability, 

satisfiability, truth valuation, or validity.  

 

Unfortunately, all the foregoing terms, as well as their antonyms, are sometimes used without 

qualification to refer to a number of properties in the literature, each having a distinct formal 

definition. The literature often fails to explicitly differentiate these properties, relying on context 

and the reader’s expertise to determine which property is being discussed. To make matters more 

confusing, under certain circumstances two otherwise distinct properties may each imply the 

other in some formal logical systems and authors then use the terms interchangeably.  

 

As we will see, the qualified versions of these properties are of great importance to our subject 

matter: whether a formal logical system (or wff, rule of inference, and the like) possesses these 

properties determines whether they are or are not suitable as a foundation for a DBMS or, least, 

determines the advantages and disadvantages of using them for that purpose. We define the 

qualified properties below, dividing them into proof theoretic properties and model-theoretic 

properties. 

 

Properties have consequences, and where reasonable, these are described with each property in 

the sections that follow.
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II. PROOF-THEORETIC STRUCTURAL PROPERTIES 

 

Proof-theoretic structural properties can be grouped into properties pertaining to vocabulary, 

formation rules, axioms, inference rules. We look at each of these groups below, making the 

ways systems can differ explicit and, where reasonable to do so, pointing out the potential 

impact of such differences. 

 

The Vocabulary 

 

The vocabulary of formal system can differ in terms of its logical symbols, its non-logical 

symbols, or both.  

 

Logical Symbols 

 

The logical symbols of a vocabulary are typically divided into grouping indicators and operator 

symbols (the operator symbol set). A certain number of the logical symbols for operators may be 

designated as primitive (the primitive operator symbol set). All non-primitive operators symbols 

are then necessarily defined in terms of combinations of primitive operator symbols (according 

to either the formation rules or the inference rules), and then denoted via a unique logical 

symbol. Recall that “primitive” is a designation, not an intrinsic property to be discovered.  

 

Logical Symbol Set Cardinality – The number of logical symbols may be finite (some specific 

number) or infinite.
4
 For the sake of generality, the number of logical symbols is often taken to 

be infinite as part of the formal definition and then reduced to a finite number in practice.  

 

Operator Symbol Set Cardinality – The cardinality of the operator set may be finite or infinite so 

long as this is consistent with the cardinality of the logical symbol set. Having a large number of 

operators, let alone an infinite set, negatively affects comprehension and usability. 

 

Primitive Operator Symbol Set Cardinality –The number of primitive operator symbols may be 

finite or infinite (although the latter is rare).
5
 The cardinality of the set may also be given as 

bounded, countable, or uncountable. The number of primitive operator symbols affects both 

comprehension and usability. If too small, expressions involving those operator symbols become 

more verbose and difficult to understand. If too large, there are likely to be multiple, equivalent 

expressions. 

 

Primitive Operator Symbol Set Independence – We say that a primitive operator symbol set is 

independent if it is impossible for any primitive operator symbols in the set to be expressed in 

terms of the others. A primitive operator symbol set is either independent or not. We say that two 

                                                 

 
4
 The set may be of transfinite cardinality, although this possibility will not concern us in this work. 

5
 The set may be of transfinite cardinality but, again, this will not concern us herein. 
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sets of operator symbols are equivalent if every operator symbol in one can be defined in terms 

of a composition of one or more operator symbols in the second and vice-versa. For any non-

independent set of operator symbols, there exists a set of operator symbols that is both 

independent and equivalent to the original set. If the primitive operator symbol set is not 

independent, two or more wffs can express the same thing while appearing completely different.  

 

Minimal Primitive Operator Symbol Set – The number of operator symbols may or may not be 

minimal in the sense that, of all possible primitive operator symbol sets, any other primitive 

operator symbol set is either non-independent or has greater cardinality.  

 

Canonical Interpretation – Each primitive operator symbol will have a canonical interpretation or 

intended meaning (as given by the definer of the formal system). The primitive operator symbol 

set thus corresponds to a set of operations as understood in the canonical interpretation.  

 

For two formal systems, any of the foregoing may differ. 

 

Non-Logical Symbols 

 

The set of non-logical symbols, and the subsets discussed below, may have either finite or 

infinite cardinality. They may also be transfinite, although this possibility will not concern us in 

this work. For the sake of generality, the number of non-logical symbols is often taken to be 

infinite (at least in principle). A certain finite number of non-logical symbols may be designated 

as primitive. Any combination of primitive non-logical symbols may then be given a non-logical 

symbol (intended to designate a more complex entity). This approach permits a potentially large 

number of (abstract) entities to be given a symbolic representation. 

 

In a formal logical system, certain non-logical symbols are designated as constants, among them 

constants interpreted as truth indicators under the canonical interpretation. In keeping with the 

distinction between syntax and semantics as presented herein, these truth indicators belong to the 

Deduction Subsystem and so are considered distinct from truth values, which properly belong to 

the Interpretation Subsystem.
6
  

 

Non-Logical Symbol Set Cardinality – The number of non-logical symbols may be finite (some 

specific number) or infinite. The cardinality of the set may also be given as bounded, countable, 

or uncountable. 

 

Non-Logical Symbol Set Independence – The primitive non-logical symbol set may or may not 

be independent in the sense that it is impossible for any particular non-logical symbol to be 

expressed in terms of the others.  

                                                 

 
6
 In a logical calculus as defined, for example, by Carnap (The Logical Syntax of Language, 2010) truth indicators 

and truth values are not distinguished. 
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Non-Logical Symbol Independent Set Cardinality – The number of independent non-logical 

symbols may be finite or infinite (although the latter is rare). The cardinality of the set may also 

be given as bounded, countable, or uncountable. 

 

Minimal Primitive Non-Logical Symbol Set – The number of non-logical symbols may or may 

not be minimal in the sense that, of all possible primitive non-logical symbols sets, any other 

primitive non-logical symbols set is either non-independent or has greater cardinality.  

 

Non-Logical Symbol Set Categories– Non-logical symbols may be partitioned into a number of 

primitive, independent categories
7
 (each a primitive category set). From these primitive category 

sets, derived category sets may be defined. The primitive category set might or might not be 

minimal in the sense that, of all possible primitive category sets, any other primitive category set 

is either non-independent or has greater cardinality.  

 

Truth Indicator Set Cardinality  – The number of truth indicators may be finite or infinite. The 

latter is rare and, with few exceptions, requires an unusually abstract canonical interpretation. 

The cardinality of the set may also be given as bounded, countable, or uncountable. 

 

 

The Formation Rules 

 

Every formal logical system is defined as having one of many different possible sets of 

formation rules. Each particular formation rule set may be partially characterized in terms of its 

cardinality (the number of rules) and the specific rules. The formation rules determine what 

constitutes a wff and so affect any wff property and any system property that is required to apply 

to some set of wffs (possibly all wffs).  

 

Formation rules specify a grammar using what a syntax language, distinct from the object 

language. There are many syntax languages
8
 that can be used to specify equivalent formation 

grammars – grammars that describe the same set of wffs. Proving that two formation rule sets 

do or do not specify the same set of wffs when applied to the same vocabulary can be a 

challenge. Although the following properties are helpful in comparing formal logical systems, 

two formation rule sets with the same properties are not necessarily equivalent. 

 

Formation Rule Set Cardinality – The number of distinct rules may be either finite or infinite, 

and if infinite may be countably infinite or not. Typically, one strives to define systems using a 

relatively small number of formation rules as this aids both comprehension and usability.  

                                                 

 
7
 Although a primitive set of categories might not be independent, but if not then such a set may be defined from it. 

8
 Preferred syntax languages often have recursive grammars or regular grammars. We will define these in a later 

article. 
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Formation Rule Set Independence – The formation rule set may or may not be independent in 

the sense that it is impossible for any particular formation rule to be expressed in terms of the 

others. 

 

Minimal Formation Rule Set – If no formation rule can be eliminated from the formation rule set 

without reducing the set of wffs described, we say the formation rule set is minimal. 

 

Recursive Formation Rule Set – A formation rule set is said to be a recursive if they provides a 

recursive definition of a wff. One or more wffs having a particular form are chosen as “base” 

wffs, thereby providing the base of the recursion. Then, rules are given for creating more 

complex wffs by combining wffs and logical symbols, thereby giving the recursion or induction. 

For example, if any individual non-logical symbols such as P, Q, and R designate wffs and ∧ is a 

logical symbol designating an operator, then P ∧ Q is also a wff. By recursion it follows that P ∧ 

Q ∧ R is also a wff. Notice that recursiveness is a purely syntactic concept – no specific 

meanings have been given to the symbols involved. 

 

 

The Axioms 

 

Formal systems may or may not be axiomatic. An axiomatic formal system has an explicitly 

given set of axioms. As previously noted, each axiom is a wff that is a priori semantically valid 

(see the definition of semantic validity below).  

 

Every formal logical system is defined as having one of many different possible sets of axioms 

(axiom sets). Each particular axiom sets may be partially characterized in terms of its cardinality 

(the number of axioms, possibly zero) and the specific axioms. Because axioms are necessarily 

the initial wffs of every proof sequence, they affect any property that depends upon what can and 

cannot be proved.  

 

Axiom Set Cardinality – The number of distinct axioms may be either finite (possibly zero) or 

infinite, and if infinite may be countably infinite or not. When the number of axioms is large of 

possibly infinite, we may instead specify a set of axiom schemata – that is, a set of axiom forms 

such that any wff having the specified form is an axiom. A large number of axioms affects 

comprehension and usability of the Deduction Subsystem, and increases the likelihood of an 

inconsistency among them. We will give an example of axiom schemata in a later article when 

we address a specific formal logical system. 

 

Axiom Set Independence – An axiom set is said to be axiomatically independent (a.k.a., 

deductively independent) with respect to an inference rule set if it is impossible for any 

particular axiom to be derived from the others, given the set of inference rules. The rules in the 

set are thus mutually independent. It is typically possible to find multiple independent axiom sets 

each of which are equivalent in the sense that they can be used to deduce the same set of proof 
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sequences using some specific inference rule set. If a particular wff in an axiom set is 

independent of the others then either it or its negation may be assumed without introducing an 

inconsistency. If the axiom set is axiomatically independent, it is a priori consistent. 

 

Minimal Axiom Set – An axiom set is minimal with respect to an inference rule set if no axiom 

can be eliminated from the axiom set without reducing the set of wffs that can be deduced. Note 

that there may exist multiple distinct, but minimal axiom sets. As the axiom set decreases in size, 

proof sequences tend to become longer and vice-versa. However, the ability to create proof 

sequences and understand individual inference steps can be facilitated. 

 

The Inference Rules 

 

Every formal logical system is defined as having one of many different possible sets of inference 

rules. Each particular inference rule set may be partially characterized in terms of its cardinality 

(the number of rules) and the specific rules. Because the inference rules determine what 

constitutes a proof sequence, they – like axioms – affect any property that depends upon what 

can and cannot be proved.  

 

Inference rules, like formation rules, are specified in a syntax language (again, distinct from the 

object language) and provide an inferential grammar for the formal logical system. There are 

many ways to specify inferential grammars, some of which are equivalent. Two formal logical 

systems are said to have equivalent inferential grammars if their inference rules can be used to 

construct or deduce the same sets of proof sequences from the same set of axioms. Proving that 

two inference rule sets do or do not specify the same set of proof sequences when applied to the 

same axiom set can be a challenge. The following properties are helpful in comparing formal 

logical systems. However, it is important to remember that, even if these properties are the same, 

two inference rule sets do not necessarily provide equivalent inferential grammars. 

 

Inference Rule Set Cardinality – The number of distinct inference rules may be either finite 

(possibly zero) or infinite, and if infinite may be countably infinite or not. When the number of 

inference rules is infinite, we may instead specify a set of inference schemata – that is, a set of 

inference rule forms such that any inference step having the specified form is an application of 

the inference schemata. We will give an example of inference schemata in a later article in a 

later article when we address a specific formal logical system.   

 

Inference Rule Set Independence – An inference rule set is independent if it is impossible to 

infer any particular inference rule from the combination of the others. They are thus mutually 

independent. It is typically possible to find multiple independent inference rule sets each of 

which are equivalent in the sense that they can be used to deduce the same set of proof 

sequences from some specific axiom set. 

 

Minimal Inference Rule Set – An inference rule set is minimal if no inference rule can be 

eliminated from the inference set without reducing the set of wffs that can be deduced. We will 
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say that the inference rule set is globally minimal if, in addition to being minimal, there exists no 

inference rule set of smaller cardinality. Note that there may exist multiple distinct, but minimal 

inference rule sets. 

 

 

The Trades-off Between Axioms and Inference Rules 

 

It is well known that the number of inference rules can be reduced by increasing the number of 

axioms or replacing axioms with axiom schemata. This is especially useful if the number of 

inference rules is zero. Conversely, sometimes the number of axioms can be reduced by 

increasing the number of inference rules, or by introducing inference schemata. Again, this is 

especially useful if the number of axioms is zero 
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III. PROOF-THEORETIC SYNTACTIC PROPERTIES 

 

Proof theory uses the rules of inference to study whether or not a wff can be deduced and 

proven, whether or not a set of wffs are deductively equivalent, and whether or not the formal 

logical system has certain properties of consistency and decidability. 

 

The definition of a formal logical system is meant to specify a set of symbols, operations, and 

rules for their manipulation that can be applied in a purely mechanical fashion: that is, the 

process of determining whether an expression belongs to the vocabulary, is a wff, or is an axiom, 

must not be based on judgment or on the outcome of some random event.  

 

We do not mean that the system’s rules are necessarily intended to be followed by a machine 

rather than a person. However, loosely speaking, any application of the rules can be performed 

by a machine as well as a person, and will yield the same result each time it is repeated. 

Determining whether or not a rule of inference has been properly applied must also be purely 

mechanical. As we will see, having rules specified in such a way that they can be mechanically 

applied does not necessarily mean that an algorithm exists for determining which rules to apply 

when
9
 and, in general, such an algorithm will not exist. 

 

Each possible combination of choices for the components that make up a formal logical system 

results in a distinct formal logical system. We can sometimes show two formal logical systems 

are equivalent in some sense. Usually these are trivial cases involving, for example, 

inconsequential differences of representation such as using the Greek alphabet in place of the 

English alphabet for symbols, or if we change which wffs are axioms and so which must be 

theorems.  

 

Deductive Power and Deductive Equivalence 

 

Formal logical systems rarely have the same deductive power, defined as the set of theorems that 

can be derived.  If two systems have equal deductive power, they may be said to have the 

syntactic property of deductive equivalence (of systems) and so are deductively equivalent. 

Sometimes one formal logical system ℒ1 is a deductively equivalent to a subset of a second 

formal logical system ℒ2, in which case any wff provable in ℒ2 is provable in ℒ1 and we say that 

ℒ1 is deductively more powerful than ℒ2. Deductive equivalence (of wffs) applies the property to 

two wffs: Two wffs belonging to the same formal logical system are said to be deductively 

equivalent (a.k.a., syntactically equivalent) if one can be deduced from the other and vice-versa.  

 

As a matter of applied logic, the selection of a formal logical system for some particular purpose 

will often be dictated to a significant degree by the requirement of sufficient deductive power. 

                                                 

 
9
 We are, in effect, excluding the class of programs called theorem provers which use various heuristics and 

machine learning methods, and are non-deterministic. 
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Perhaps counter-intuitively, however, we will often need to avoid selecting a system with too 

much deductive power. The semantic counterpart to deductive power – expressive power – is 

also crucial and will be discussed in the model-theoretic section on semantic properties below.  

 

Logical Entailment 

 

A set of wffs S logically entails a wff f (written “S ⊢ f”) if and only if there is a formal proof of f 

(the consequent) from S (the premises); that is, if and only if f is provable from S. Equivalently, 

we say that f is a logical consequence of S. Logical entailment is also known as logical 

consequence, syntactic consequence, or logical implication. We will see below that logical 

entailment is a important prerequisite for a number of other properties. Logical entailment and 

logical consequence are not to be confused with their model-theoretic counterparts: semantic 

entailment and semantic consequence, both defined in the model theoretic section below. 

 

Syntactic Validity 

 

We say that an inference is a syntactically valid inference (a.k.a., valid with respect to 

provability) if and only if the concluding wff premises can be derived from the (usually 

immediate) premises via a rule(s) of inference. The conclusion of a syntactically valid inference 

is sometimes referred to as a syntactically valid wff. Recall that we defined a formal proof of a 

wff f as a sequence of wffs (including axioms) ending in f, each the result of applying the rules 

of inference to the preceding wffs. (The initial wffs in the sequence are typically axioms.)  

Therefore, a formal proof is a syntactically valid sequence of inferences. A wff f is said to be 

provable if there exists a proof of f. Every theorem is, by definition, a syntactically valid wff.  

 

(Syntactic) Consistency 

 

A formal logical system is said to be proof-theoretically consistent (a.k.a., p-consistent or 

negation consistent) if no two provable wffs contradict each other (i.e., it is not the case that 

there exists a wff A for which both A and ¬A are theorems).  

 

A system is absolutely consistent if and only if at least one wff exists that is not a theorem of the 

system. Note that if this is not the case, then every wff and its negation are theorems.  

 

A system ℒ1 that is proven consistent under the assumption that a different system ℒ 2 is 

consistent is said to be relatively consistent or “consistent relative to ℒ 2”. The reader might 

better understand relatively consistency by thinking of it as “contingent consistency”: if ℒ1 is 

consistent relative to ℒ 2 then the consistency of ℒ1 is contingent upon the consistency of ℒ 2. 

There may already exist a direct proof of the consistency of ℒ2., and a proof of the consistency of 

ℒ1 relative to ℒ2 may well be easier to establish than a direct proof of the consistency of ℒ1. Be 

aware, though, that ℒ2 might in turn be relatively consistent.   

 

 

http://www.alternativetech.com/
mailto:mcgoveran@AlternativeTech.com


 

Copyright ©2014-2016 Alternative Technologies, All Rights Reserved Page 18 
www.AlternativeTech.com  mcgoveran@AlternativeTech.com 

DRAFT Chapter 05 – March 23, 2016 
Post Office Box 4699, Deerfield Beach, FL 33442             Telephone: 831/338-4621 

Negation Completeness 

 

A formal logical system is negation complete if for each truth valued wff f, either f or ¬f is a 

theorem.  Negation completeness is the form of completeness that Gödel’s Incompleteness 

Theorems address (we will discuss these theorems in more detail in a later article). A system is 

negation incomplete if, for at least one truth valued wff f such that (i) neither f nor ¬f is a 

theorem, or (ii) f is undecidable (see below).  In systems having certain additional properties, 

deductive completeness (a semantic property defined in the next section) implies negation 

completeness and negation completeness implies deductive completeness.  

 

 

Deductive Decidability 

 

A formal logical system is said to be decidable with respect to provability (a.k.a., p-decidable or 

deductively decidable) if it is provable (via a meta-theorem) that there exists an algorithm – an 

effective, mechanical procedure – for determining if an arbitrary wff is provable or not. 

Alternatively, we may say that a procedure exists that decides whether every wff is or is not a 

theorem of the system. Such a procedure is said to solve the decision problem for provability. 

Note that this does not necessarily mean that an effective procedure is known for finding a 

specific proof, only that one exists.  

 

When it is proven that no algorithm exists to solve the decision problem for provability, the 

formal logical system is said to be p-undecidable, deductively undecidable, or undecidable for 

provability. For a formal logical system that is p-undecidable theory, there exists wffs which are 

provable (or unprovable) but for which there is no algorithm that can make that determination. 

For p-undecidable systems then, we are in the unfortunate position of having to find an actual 

proof (of disproof) for potentially very complex wffs before we can assert they are (or are not) a 

theorem. Note that failing to find a proof does not enable us to conclude that the wff is not a 

theorem.  

 

Most often, the unqualified terms “decidable” or “decidability” in the literature will refer to 

decidability for provability. However, the reader should read with caution as it is not always 

clear as to which type of decidability is intended when the terms “decidable” and “decidability” 

are used. We may also speak of a particular wff or a certain class of wffs of a system being 

decidable. While many systems are not decidable, it is often the case that a particular class of 

wffs belonging to the system – wffs that are of a particular form, or satisfying certain conditions 

regarding their form – are decidable. This can be an important property when a particular 

interpretation of the system can be shown to involve only wffs of the decidable class, especially 

if that interpretation is to be implemented on a computer. On the other hand, if the computer 

application is not limited to a decidable class, then certain capabilities cannot be automated (i.e., 

by definition no effective procedure exists). 
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IV. MODEL-THEORETIC STRUCTURAL PROPERTIES 

 

It is sometimes said that model theory does not require any particular interpretation, since it 

deals with all possible truth value assignments. However, it is more accurate to say that it 

considers all possible interpretations, identifying those that are permissible and, in so doing, all 

possible truth value assignments. Throughout this section and the next, we consider properties 

that arise in consequence of the possible interpretations of a formal logical system (the subject of 

model theory).  

 

Evaluation Language: The Truth Value Set 

 

The Truth Value Set may be characterized by the number truth values and the type of each truth 

value. Of all the truth values, a subset will be designated as truth-like (or simply "designated") 

and a certain number will be designated as false-like (or simply “anti-designated”). Again, we 

remind the reader that the symbols “/ /” and “/ℱ/” are used herein to signify arbitrary designated 

and anti-designated truth values. 

 

For each truth value in the Truth Value Set, there exists a non-logical symbol that behaves as a 

constant. Every evaluation language requires a method of comparing truth values, which we will 

refer to here as a truth value comparison relation. Under the truth comparison relation, the 

members of the set of truth values may be totally ordered, partially ordered, or unordered. 

When the number of truth values is greater than two, the truth value comparison relation is 

usually given explicitly, although sometimes given implicitly by defining the Truth Value Set 

with an ordering. 

 

For example, in a classical system, there are two truth values in the evaluation language, one of 

which is designated and the other of which is anti-designated. These truth values, which we 

symbolize as “/T/” and “/F/”, usually correspond to “truth” and “falsity”, respectively, in the 

subject. Hence, because there is exactly one designated truth value and one anti-designated truth 

value, the symbol “/ /” is replaced by “/T/”and the symbol “/ℱ/” is replaced by “/F/” in all 

relevant definitions and discussions.  Corresponding to these two truth values, there are two non-

logical constants in the object language, which we symbolize throughout this series as “TRUE” 

and “FALSE”. The truth value comparison relation is totally ordered.  

 

Truth Value Set Cardinality – The number of truth values may be finite, infinite, or transfinite. 

The cardinality of the set may also be given as bounded, countable, or uncountable. 

 

Designated Truth Value Set Cardinality – The number of designated truth values must be 

consistent with the Truth Value Set Cardinality, but otherwise may be finite, infinite, or 

transfinite. The cardinality of the set may also be given as bounded, countable, or uncountable. 

 

Anti-designated Truth Value Set Cardinality – The number of anti-designated truth values must 

be consistent with the Truth Value Set Cardinality, but otherwise may be finite, infinite, or 
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transfinite. The cardinality of the set may also be given as bounded, countable, or uncountable. 

Note Bene: The number of anti-designated truth values is usually equal to, but can be less than, 

the difference between the number of truth values and the number of designated truth values. 

 

Truth Value Comparison Relation – The truth value comparison relation may induce a total 

ordering, partial ordering, or no ordering on the Truth Value Set. 

 

 

The Evaluation Procedure 

 

As described earlier, the evaluation procedure is a method by which the truth value of a wff is 

computed under a particular assignment of truth values to each occurrence of the non-logical 

constants called truth indicators in the wff. Under the evaluation procedure: 

 every truth indicator is replaced by its corresponding truth value, 

 every logical operator symbol is replaced by a corresponding truth-valued transformation 

(this might not be a function), 

 each non-logical symbol in a wff is assigned a meaning, 

 every truth-valued term (e.g., constituent wffs) in the wff is assigned a truth value, and, 

 a truth value for the wff is computed consistent with any grouping indicators.  

 

If the truth value of every wff in a formal system can be computed from the truth values of the 

constituent non-logical symbols, the evaluation procedure is truth functional and the formal 

system is said to have truth functional semantics (or simply, to be truth functional). If a system 

is truth functional, any semantic relationship among operands over and above their truth value 

assignments need not be considered in determining the truth value of a wff consisting of an 

operator having those operands. Of course, with respect to any specific interpretation, truth value 

assignments may themselves depend on the meaning assignments.  

 

Semantic operators may be either truth functional or “non-truth functional.” By non-truth 

functional we mean that they cannot be given a truth functional semantics. This distinction is 

important because it is possible to give a non-truth functional semantics for most (perhaps all) 

truth functional operators, and many formal logical systems that are presented using non-truth 

functional semantics can, in fact, be given a truth functional semantics at the cost of greater 

complexity. The “and then” connective of English is an explicit, simple example of a non-truth 

functional operator: the truth value of sentences using it cannot be determined solely from the 

truth values assigned to the conjuncts. Other non-truth functional operators include certain, 

though not all, operators defined in systems of many-valued logics, modal logics, probabilistic 

logics, temporal logics, non-distributive quantum logics, and certain intuitionistic logics. It is 

common to refer to a formal logical system that includes non-truth functional operators as a non-

truth functional logic.  
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V. MODEL THEORETIC INTERPRETIVE PROPERTIES 

 

By model theoretic or semantic properties, we mean properties that depend on one or more 

interpretations. In as sense, these are meta-linguistic properties because they relate some aspect 

of the abstract theory to at least one interpretation. Sometimes, in defining semantic properties, 

we will refer to a model instead of an interpretation, it being understood that a model necessarily 

depends on an interpretation. 

 

As noted in earlier articles, by a permissible interpretation we mean an interpretation in which 

any meanings assigned the symbols of the formal logical system are not inconsistent with their 

standard meanings; that is, their meanings as given in the system’s intended interpretation. A 

model of a wff is defined by a permissible interpretation for which the wff evaluates to / /.  

 

For our purposes, concepts such as truth and interpretation have both syntactic and semantic 

analogues that are distinct. Truth indicators in the formal language of the Deductive Subsystem 

are related to, but distinct from, truth values in the Interpretation Subsystem. An interpretation is 

defined as a set of meaning assignments and a set of truth value assignments specified as rules of 

correspondence. To be precise, we should always understand a truth indicator or a truth value to 

be relative to a specific interpretation (or at least the class of interpretations they imply). Then 

and only then we can say that a wff is “true” (or “false”) under that interpretation (or that class of 

interpretations). 

 

Model theory uses semantic operators belonging to the Evaluation Language (e.g., truth 

functions given as truth tables) to investigate the effect of permissible interpretations on a 

formal logical system.  The computation of possible truth values for a wff (e.g., its truth tables), 

truth functional equivalence among wffs, the semantic validity of particular wff, truth functional 

completeness, and substitution all depend on the semantic operators defined for the system and 

how they are defined. Nonetheless, we have attempted give below formal definitions of these 

concepts that are phrased to be applicable to most systems of interest.  

 

For some of the definitions of properties defined here require at least one interpretation, but are 

not dependent on the characteristics of any interpretation. Instead, the property must apply to all 

possible interpretations (see the next section for a formal definition of interpretation). Thus, 

although the property is defined in the light of semantics, the interpretive step plays no 

determining role. Recall that an interpretation of a theory (i.e., an otherwise uninterpreted – and 

so abstract – formal logical system) is expressed via rules of correspondence, establishing the 

subject as a model of that theory. When we are concerned with properties applicable to all 

permissible interpretations, the resulting semantic properties are then – in a sense – inherent in 

the formal logical system. It is not uncommon for such properties to be considered syntactic. In 

this series, because we wish to emphasize formal interpretation and so are not particularly 

concerned with logical calculi, we identify them as semantic in character. 
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Logical Calculi and Interpretations 

 

Concepts pertaining to interpretations require reconsideration when the formal logical system is 

a calculus. The distinction between logical operators and semantic operators disappears, the 

semantic operator being taken as a definition of the logical operator that must be consistent with 

axioms and rules of inference. Similarly, the distinction between logical truth indicators and the 

(semantic) truth values to which they correspond are merged both conceptually and 

mechanically, so that any semantic significance occurs solely within the Deductive Subsystem. 

 

In a logical calculi, only truth valued wffs may be interpreted in the sense of being assigned a 

truth value. A wff is truth valued if and only if any meaning assignment to a variable can have 

no affect on its assigned truth value. The specific rules that a wff must satisfy to meet this 

condition depend on how the logical calculus is defined and such wffs may be given a special 

name. (For example, in a predicate calculus, a truth valued wff is identified as a “sentence” or 

“closed wff”.)  

 

An interpretation of a logical calculi is then a particular assignment of truth indicators (and so 

truth values to which they are equated) to truth valued wffs, no meaning assignments being 

necessary. A model results from an interpretation in which inferential consequents are true as a 

logical consequence of the truth indicator assignments to inferential premises dictated by that 

interpretation.  

 

 

Satisfiability and Semantic Validity 

 

Satisfiability and semantic validity are fundamental concepts. Although we will provide 

definitions in this subsection, the reader is warned that there are no universal definitions for 

these properties: What constitutes satisfiability and what constitutes validity depends on the 

formal logical system to which they are being applied. Nonetheless, we provide definitions that 

are as general as possible so that the reader may have some sense of them and have a reasonable 

chance of arriving at an appropriate definition in a particular context. 

 

We say that a wff is satisfied by an interpretation if it evaluates to some designated truth value 

/ / under that interpretation. Inasmuch as an interpretation makes meaning assignments to the 

components of a wff (symbols of various types) from among the objects belonging to a subject 

system, what is meant by requiring that wff evaluate to / / can vary accordingly. (Alternatively, 

if the system is a calculus, then the meaning of / / is abstract.) Note that some truth valued 

components of a wff (e.g., n-ary predicates and functions) require multiple meaning assignments 

before a truth value can be determined or alternatively, that a truth value assignment implies 

multiple meaning assignments. With the foregoing understanding in mind, a wff is satisfiable if 

and only if it is satisfied by at least one interpretation.  

 

Often we will want to know that an interpretation satisfies a set S of wffs, in which case we say 
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require that those wffs be simultaneously satisfiable by the interpretation. A wff is unsatisfiable 

if and only if it is not satisfied by any interpretation. 

 

A wff is falsifiable (a.k.a. refutable) if and only if it is possible to conceive an argument that 

could result in the wff evaluating to /ℱ/ under some interpretation. A falsifiable wff is not a false 

wff, nor is it in any sense incorrect: it just will evaluate to /ℱ/ under at least one interpretation. 

 

 

Tautology-like 

 

A wff is tautology-like if the result of the evaluation procedure is / / for every permissible 

interpretation. Such a wff is a tautology for those special cases in which the formal logical 

system is defined to have precisely two truth-values. If the system is a logical calculus, an 

equivalent definition is that the wff evaluates to / / under every combination of truth 

assignments to its truth valued terms. 

 

Every tautology-like wff is necessarily semantically valid. A semantically valid and truth valued 

wff is necessarily tautology-like. Depending on the formal logical system, the converse of this 

may not be correct: semantically valid wffs may or may not be tautology-like. In part, this 

distinction arises because a semantically valid wff need not be truth valued in some systems.
10

 A 

wff that is both semantically valid and truth valued is necessarily tautology-like. Note that a 

tautology-like wff is sometimes said to be a “logical” truth (even though this is a semantic 

property). 

 

 

Semantic (Logical) Validity 

 

A wff f is semantically valid (a.k.a., valid with respect to satisfiability, logically valid, or, 

sometimes, “logically true”) or to have the property of semantic validity (a.k.a., logical validity) 

if and only if it is satisfied by every permissible interpretation of f. (Take note that it is 

insufficient for f to be merely satisfiable for some permissible interpretation.) The wff f is said to 

have the property of semantic validity (a.k.a., logical validity). A semantically valid wff is 

therefore evaluates to / / for every permissible interpretation, even though it may not evaluate to 

/ / for every possible truth assignment. In the propositional logic, semantically valid wffs do 

evaluate to / / for every truth assignment and are called tautologies. Every permissible 

interpretation of a semantically valid wff provides a model of that wff. If the negation of f has no 

model, then f is semantically valid. Notice that this definition involves no aspect of the 

Deductive Subsystem. Notice also that he property of semantic validity is restricted to truth 

valued (e.g., closed) wffs. 

 

                                                 

 
10

 For example, in first order predicate logic, (∀x)Px → (∃x)Px is semantically valid, but is not a tautology. 
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Many authors confusingly use the term logically valid (or logical validity) in place of 

semantically valid (or semantic validity, respectively) as applied to wffs. Readers are warned not 

to let this confusing use of the adjectives logically and logical erroneously convey a purely 

syntactic property as when used in terms such as logical consequence or logically valid inference 

(defined above). One possible reason for this confusing usage is that, for certain systems, 

syntactic validity and semantic validity coincide or are congruent. The literature pertaining to 

such systems often fails to make the congruence of syntactic validity and semantic validity 

explicit, expecting readers to understand both the fact and the implications. 

 

If a wff is satisfiable for some interpretations and not for other interpretations (i.e., its 

satisfiability is contingent upon interpretation), we say the wff is contingent. A wff is contingent 

if and only if it is both satisfiable and falsifiable. Equivalently, a contingent wff is neither 

semantically valid (satisfied for every interpretation) nor unsatisfiable.  

 

An inference is semantically valid inference if and only if, for every permissible interpretation 

of the premises and the conclusion of some inference, it is impossible for the premises to 

evaluate to / / and the conclusion to evaluate to /ℱ/. Put differentially, a deduction is a 

semantically valid inference if all and only those interpretations that make the premises / / also 

make the consequent / /.  Sometimes, in a semantic extension of the notion of syntactically valid 

wff (defined above), a wff is said to be valid in a more general sense if it is derivable from the set 

of all non-logical axioms
11

 of the system.
12

 

 

The definition of semantically valid inference is almost, but not quite, interpretation 

independent. With one exception, it is possible to find examples of inferences for all 

combinations of semantic validity and semantic invalidity versus assignments that make the 

premises and the conclusion evaluate to some combination of / / and /ℱ/. That sole exception is 

an assignment which makes the premises evaluate to /ℱ/ and the conclusion evaluate to / /. 

There can be no example given such an assignment of an inference, as existence of this one 

situation violates the very definition of a semantically valid inference. The foregoing is 

fundamental to an understanding of the difference between notions of truth and semantic 

validity, which is in turn crucial to studying formal logical systems. 

 

A semantically valid rule of inference (or simply a semantically valid inference) is a rule of 

inference that preserves semantic validity: if the premises are semantically valid, then the 

consequent is semantically valid.  

 

By definition, every axiom of a system is defined to be syntactically valid and the system’s rules 

of inference preserve syntactic validity. If  the rules of inference also preserve semantic validity, 

                                                 

 
11

 Recall that a non-logical axiom is an axiom that is not satisfied in at least one permissible interpretation, as 

contrasted with a logical axiom which must be satisfied in every permissible interpretation. 
12

 See Tarski, A, Mostowski, A., Robinson, R. M. Undecidable Theories. ©1953, Dover Publications. Mineola, New 

York. pp. 6-12, 18. 
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we sometimes say that, given a set of wffs S, the semantic validity of a wff f (or possible 

multiple wffs) follows from S as a logical consequence – emphasizing the requirement of 

preserving semantic validity, rather than that f is satisfied under all interpretations. We may also 

say that, if f is provable from S (in symbols, S ⊢ f), then f is semantically valid if and only if 

each wff of S is semantically valid. Equivalently, we may then also say that f is a logical 

consequence of S or there is a formal proof of f given S.  

 

[Exercise: Create an array of inferences covering all possible truth assignments to premises, all 

possible truth assignments to the conclusion, and all possible validities of the inference (valid 

versus invalid).  You can use English declarative sentences for the premises and conclusion in 

each case. ]  

 

Semantic Consequence and Semantic Entailment 

 

A wff f is a semantic consequence of a set of wffs S (written “S ⊨ f ”) if and only if there is no 

permissible interpretation for which all members of S evaluate to / / and f  evaluates to /ℱ/. 

Alternatively, we may say that a set of wffs S semantically entails or models a wff f if and only 

if every permissible interpretation of the formal logical system that satisfies S also satisfies f. In 

other words, the set of permissible interpretations that make all members of S evaluate to / / is a 

subset of the set of permissible interpretations that make f evaluate to / /.   

 

Model-theoretic Consistency 

 

A wff that evaluates to / / for least one interpretation is said to be m-consistent (a.k.a. model-

theoretic consistent or semantically consistent). If every wff in a set of wffs evaluates to / / for 

some interpretation, it is called a model-theoretic consistent set of wffs. A wff (or set of wffs) is 

m-inconsistent (a.k.a. model-theoretic inconsistent or semantically inconsistent) if it has is no 

interpretation. Notice that m-consistency is the same as satisfiability. We present it here as a 

distinct term in contrast with its proof theoretic counterpart p-consistency. 

 

Expressive Power and Expressive Completeness 

 

All uninterpreted formal systems (i.e., an abstract theory), including uninterpreted formal logical 

systems, have expressive power, defined as the set of subject systems for which some 

interpretation (a set of rules of correspondence) of the theory exists. Not all formal logical 

systems have the same expressive power. A formal logical system is expressively complete (or 

enjoys expressive completeness) with respect to some interpretation if all statements in the 

subject system’s subject language can be expressed in the object language. Note that, if the 

subject has no subject language per se, then the interpretation effectively provides or “induces” 

such a language.
13

 We sometimes say that a formal language is expressively complete with 

                                                 

 
13

 The closest concept to expressive completeness in a logical calculus is truth-functional completeness. 
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respect to some subject, meaning that it can express all the relevant subject matter. In other 

words, the formal system or language is sufficiently powerful to be able to represent the subject 

system completely.   

 

If a formal logical system is expressively incomplete (i.e., not expressively complete) with 

respect to some subject, there will be elements of the subject system that the formal system 

cannot represent. A related difficulty occurs when the formal logical system has more expressive 

power than the subject. Lacking a better term, we will say the system is expressively over-

complete with respect to the subject. There will then be elements in the formal logical system 

(e.g., constants, variables, axioms, or theorems) that have (and possibly cannot have) no 

counterpart in the subject. 

 

Both expressive incompleteness and expressive over-completeness may be encountered in 

practice, requiring adjustments to be made. When a formal logical system is expressively 

incomplete, it is necessary to find either an extension of the formal logical system that is 

expressively complete with respect to the subject or else find a proper subset of the subject 

system for which the formal logical system is expressively complete. When a formal logical 

system is expressively over-complete, one can establish expressive completeness either by 

finding a fragment
14

 (i.e., a subsystem) of the formal logical system that is expressively complete 

with respect to the subject or else find a superset of the subject system so that all elements of the 

formal logical system can be interpreted in terms of the subject system.  

 

If, with respect to some subject, a formal logical system is expressively complete without being 

expressively over-complete, we say the formal logical system is expressively minimal with 

respect to the subject. If the formal logical system is axiomatically independent (with respect to 

rules of inference) and the number of axioms is minimal without loss of expressive 

completeness, we say the formal logical system is deductively minimal.  

 

If two (or more) formal logical systems can be interpreted by exactly the same set of subject 

systems, they have equal expressive power. Each is then said to have the semantic property of 

expressive equivalence with respect to the other(s)
15

 or that any pair of such systems are 

expressively equivalent. In a sense, expressive power and expressive equivalence are the 

semantic counterparts to the syntactic concepts of deductive power and deductive equivalence 

(both defined in the previous section). They are, however, quite different. Two formal logical 

systems may be deductively equivalent but not expressively equivalent.  

 

[Exercise: Can two formal logical systems be expressively equivalent without being deductively 

equivalent? Justify your answer.]  

                                                 

 
14

 The concept of a fragment of a formal logical system is defined formally below. 
15

 Of course, two systems that are completely isomorphic are not only deductively equivalent but expressively 

equivalent.  
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Truth Functional Semantics 

 

A system is truth functional if the evaluation of a wff can proceed mechanically from the evalu-

ation of its components. A system is said to be truth functionally complete if, given a set of 

truth functions (e.g., truth tables) in the evaluation language corresponding to a set of operators 

in the object language, we can express every possible truth function (or truth tables) by some 

combination of the given truth functions. As will be seen, the property of truth functional 

completeness is important for applications in database theory. Two evaluation language 

expressions (or the wffs from which those expressions derive) are said to be truth functionally 

equivalent if they have the same truth function (e.g., truth table).  
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VI. RELATIONSHIPS BETWEEN SYNTAX AND SEMANTICS 

 

 

The following properties identify special relationships between syntax and semantics, especially 

various semantic properties of a system’s theorems. 

 

Validity with respect to Evaluation 

 

A valid evaluation language expression (or the wff from which that evaluation language 

expression derives) evaluates to / / (according to the truth functions) for all possible meaning 

assignments and subsequent truth value assignments to its components.  

 

 (Semantic) Soundness 

 

An individual rule of inference can be semantically sound inference rule, meaning that it is 

sound with respect to semantic validity. The rule of inference preserves semantic validity in the 

sense that, if a premise if semantically valid, any consequent of the rule of inference is also 

semantically valid. An inference (sometimes called an “argument”) is a semantically sound 

inference if and only if, for every permissible interpretation, the (syllogistic) premises of the 

inference logically entail the conclusions. 

 

A formal logical system is semantically sound system (i.e., sound with respect to 

tautologousness or semantic validity) if and only if every theorem is semantically valid with 

respect to the theory’s intrinsic semantics (i.e., its permissible interpretations). In other words, in 

a semantically sound system, all inference rules are semantically sound and therefore all 

theorems of the formal logical system are tautology-like.  

 

(Semantic) Correctness 

 

A formal logical system is said to be correct if every interpretation (as implied, for example, by 

a set of truth assignments) that makes every axiom of the system evaluate to / / also makes 

every theorem evaluate to / /. To put it another way, a formal logical system is correct if all its 

rules of inference preserve the truth value / /: Deductions in a correct formal logical system 

guarantee that if we start from initial wffs that evaluate to / /, the resulting theorems will 

evaluate to / /. Notice that correctness offers no guarantees if the initial wffs evaluate to /ℱ/.   

 

Semantic Consistency 

 

In a semantically correct logical system (that is, one with the property of correctness), if every 

wff that is a theorem is also tautology-like, logicians say that the system is semantically consis-

tent ( a.k.a., m-consistent). Put differently, a system is semantically consistent if and only if it is 

http://www.alternativetech.com/
mailto:mcgoveran@AlternativeTech.com


 

Copyright ©2014-2016 Alternative Technologies, All Rights Reserved Page 29 
www.AlternativeTech.com  mcgoveran@AlternativeTech.com 

DRAFT Chapter 05 – March 23, 2016 
Post Office Box 4699, Deerfield Beach, FL 33442             Telephone: 831/338-4621 

both semantically correct and semantically sound. 

 

Note that the relevant set of interpretations (i.e., those for which a wff is tautology-like) need not 

make the axioms tautology-like. Of course, the theorems of a correct system provable from the 

axioms are always tautology-like. In a consistent system, every provable wff evaluates to / / 

irrespective of truth assignments, even those interpretations (meaning assignments and truth 

assignments) that make the axioms evaluate to /ℱ/.  

 

If a system is not consistent, we say the system is inconsistent. In an inconsistent formal logical 

system, the deductive relationship among a set of wffs and the evaluations for that set of wffs do 

not align provability and evaluation to / / for at least some set of wffs. Generally speaking, 

higher ordered logics (those beyond first-order) are inconsistent. 

 

The logician’s concepts of consistency and inconsistency are related to, but distinct from, the 

common notion of being inconsistent (that is, contradictory). Logicians call our common notion 

negation inconsistency, which is a syntactic property (defined under proof theoretic properties 

above). 

 

Completeness: Deductive, Refutation, and Semantic 

 

A formal logical system is said to be deductively complete (a.k.a., complete with respect to 

provability) if (i) it is semantically correct (i.e., its rules of inference are truth preserving – see 

definition below) and (ii) every tautology-like wff (a semantic property of wffs) is provable (a 

syntactic property of wffs). In other words, under every permissible interpretation that makes the 

axioms of the system evaluate to / /, the corresponding subject system’s set of expressions that 

evaluate to / / will be identical to the set of provable wffs (theorems). From the perspective of 

models, every true expression in a model of the system is then expressible (according to some 

interpretation and set of truth value assignments) as a wff that is not only (a) satisfied, but (b) 

provable. 

 

Whenever a formal logical system is both deductively complete and decidable with respect to 

provability (defined above), then an effective procedure must exist to determine whether or not 

any arbitrary wff is tautology-like. This means that deductive completeness can then be 

understood in terms of an effective procedure for evaluation (applied over all permissible 

interpretations) rather than as an effective procedure for deduction (i.e., provability) in the object 

language). This observation has profound implications for database theory and practice, in 

particular for the desired properties of formal logical systems that can serve as a foundation for a 

DBMS. 

 

A system is strongly complete (a.k.a., “deductively complete in a strong sense”, syntactically 

complete, or maximally complete) if no wff can be added to its axiom set that would be 

independent of the other axioms. For every set of wffs S in a strongly complete system, if a wff f 

is a semantic consequence of S, then f is provable (i.e., deducible) from S. In other words, if S 
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semantically entails f, then S logically entails f. Again, notice the relationship between syntactic 

and semantic properties.  

 

If a system is strongly complete and p-consistent (a.k.a., negation consistent), it is provable that 

any new independent axiom can only make the system inconsistent (assuming it is to remain 

strongly complete). In another sense, since adding a new axiom to an inconsistent system cannot 

make that system consistent, a formal system is strongly complete if and only if no unprovable 

sentence can be added to it without introducing an inconsistency.  

 

[Exercise: Give an informal proof of the foregoing properties of strongly complete and p-

consistent formal logical systems.] 

 

The property of being strongly complete will be an important goal when we discuss applications 

of logic to database theory. Ideally, we will want to designate a set of wffs that represent the 

subject as axioms and to know that no others are either necessary or advantageous.  

 

A formal logical system is refutation complete if for every set of unsatisfiable wffs S that 

logically entail f it is possibly to show that f evaluates to /ℱ/. Note the difference between 

refutation completeness (a semantic property) and negation completeness (a syntactic property).  

 

If a formal logical system is both (i) deductively complete and (ii) all semantically valid wffs are 

theorems (syntactically valid)
16

, then we say the system is semantically complete. Systems that 

are deductively complete are not necessarily semantically complete for the same reasons that all 

semantically valid wffs are not necessarily tautology-like. The phrase “complete with respect to 

tautologousness” is sometimes used for the property of semantic completeness. Semantic 

completeness is the converse of semantic soundness for formal logical systems. (Both 

propositional logic and first order predicate logic are semantically complete.) 

 

 

Decidability (with the respect to Satisfiability) 

 

A formal logical system is said to be decidable with respect to satisfiability if it is provable that 

there exists an effective procedure for determining if an arbitrary wff is satisfiable or not. Such a 

procedure solves the decision problem for satisfiability. Note that this does not necessarily mean 

that an effective procedure exists for finding any specific satisfaction of any wff. If an effective 

procedure exists for finding a satisfaction of any wff (i.e., an effective evaluation procedure) it 

follows that the system is decidable with respect to satisfiability. If a system is semantically 

correct (true axioms imply true theorems for every interpretation) and decidable with respect to 

provability, it follows that it is decidable with respect to satisfiability. 

                                                 

 
16

 Put another way, this condition means the system is deductively powerful enough to prove all true wffs of the 

intended interpretation – it is deductively complete. 
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Decidability (with the respect to Semantic Validity) 

 

A formal logical system is said to be decidable with respect to (semantic) validity
17

 if it is 

provable that there exists an effective procedure for determining if an arbitrary wff is 

semantically valid or not. Such a procedure solves the decision problem for validity. Note that 

this does not necessarily mean that an effective procedure exists for finding a specific proof of 

validity.  

 

If a system is both semantically sound (every theorem true) and deductively complete, then a wff 

is semantically valid if and only if it is syntactically valid (i.e., a provable wff).  It follows that 

such a system is decidable for provability if and only if it is decidable for validity: the proof 

theoretic concept of decidable for provability and the model theoretic concept of decidable for 

validity coincide. It is common for authors writing about such systems to use the terms 

interchangeably and use “decidable” without qualification.  

 

[Exercise: Prove from the definitions of semantically sound and deductively complete the 

assertion of the first sentence of the preceding paragraph. Don’t forget in your proof that the 

asserted relationship between semantic validity and syntactic validity is a biconditional.] 

 

 

Semantic Decidability 

 

For formal logical systems that have certain model theoretic properties (semantic correctness 

and consistency), decidability may sometimes be determined by a semantic test. In an attempt to 

keep this special case distinct from the general definition, we will call it semantic decidability. 

 

A formal logical system that is semantically correct and m-consistent is semantically decidable 

if there exists an effective procedure for determining the truth value – / / or /ℱ/ – of any wff. A 

formal logical system that is not semantically decidable is said to be semantically undecidable. 

This means that no effective evaluation procedure exists, although there may be an evaluation 

procedure that has less desirable properties (e.g., it may not be guaranteed to terminate in a finite 

number of steps). If a formal logical system is semantically correct and m-consistent, but 

semantically undecidable then there exists no effective evaluation procedure that can determine 

the truth value of each of the system’s wffs is / / or /ℱ/, even thought those wffs are in fact 

either / / or /ℱ/. If a formal logical system is semantically correct, m-consistent, and deductively 

decidable, then it is semantically decidable. (This property is important in relational database 

theory as we shall see.) 

 

                                                 

 
17

 Here validity specifically means semantic validity although this is rarely made specific. 
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VII. HOW PROPERTIES DEPEND ON SYNTAX AND SEMANTICS 

 

The following chart summarizes how the properties we have defined relate to and depend on 

details of the Deduction Subsystem (syntax) and of the Interpretation Subsystem (semantics). In 

many cases, these properties can be seen to define a relationship between syntax and semantics. 

The chart lists aspects of the formal logical system as columns and a specific property in each 

row. An “*” in the intersection indicates that the property is dependent on that aspect of the 

formal logical system. Note that the lexicon and formation rules jointly determine what 

constitutes a wff, and axioms and rules of inference jointly determine what is or is not a theorem. 

 

The relevant aspects of a formal logical system that influence its properties are the lexicon (L), 

the set of logical operations (LO), formation rules  (FR), axioms (A), rules of inference (RoI), 

some other deductive/syntactic factor (OD), the intended interpretation (II), all permissible 

interpretations (PI), at least some specific interpretation (SI), evaluation procedure and language 

(E), and the set of truth functions (TF), and some other interpretive/semantic factor (OI). Figure 

5.1 shows the relationship between syntactic properties and the Deduction Subsystem. Figure 5.2 

shows the relationship between semantic properties and the Interpretation Subsystem. 

 

SYNTACTIC 

PROPERTY 

DEDUCTION 

L LO FR A RoI OD 

equivalent formation grammars * * *    

equivalent inferential grammars * * * * *  

deductive power * * * * *  

deductive equivalence * * * * *  

syntactically valid inference * * * * *  

syntactically valid wff * * * * *  

p-consistent * * * * *  

absolutely consistent * * * * *  

relatively consistent * * * * * * 

logical entailment * * * * *  

logical consequence * * * * *  

negation complete * * *  *  

p-decidable * * * * * * 

 

Figure 5.1:  Syntactic Properties of Formal Logical Systems 
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SEMANTIC 

PROPERTY 

DEDUCTION INTERPRETATION 

L LO FR A RoI OD II PI SI E TF OI 

satisfiability * * * * *  * *  * *  

falsifiability * * * * *  * * * * *  

tautology-like             

semantically valid  * * * * *  * *  * *  

semantically valid 

inference 

* * * * *  * *  * *  

semantic entailment * * *    * *  * *  

semantic consequence * * *    * *  * *  

expressive power * * * * *  *  * * *  

expressive completeness * * * * *  *  * * *  

expressive equivalence             

truth functional semantics       * * * * *  

truth functional 

completeness 

 *     * *  * *  

truth functional 

equivalence 

 *     * *  * *  

valid w.r.t. evaluation * * * * *  * *  * *  

semantically sound * * * * *  *   * *  

semantically sound 

inference 

* * * * *   *  * *  

m-consistent * * *    * * * * *  

semantic correctness * * * * *   *  * *  

deductive completeness * * *  *   *  * *  

strongly complete * * *  *   *  * *  

decidable for satisfiability * * *   * * *  * *  

refutation complete * * * * *  * *  * *  

semantic completeness * * *  *  * *  * *  

decidable for validity * * * * *  * *  * * * 

semantic decidability * * * * *  * * * * * * 

decidable for satisfiability * * * * *  * *  * * * 

 

Figure 5.2:  Semantic Properties of Formal Logical Systems 
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VIII. CONCLUSIONS  

 

The properties of a formal logical system matter. Ideally, we would like a formal logical system 

to have the properties of being provably semantically correct, consistent, expressively complete, 

strongly complete, and deductively complete. This combination is an extremely difficult goal to 

attain, except when the expressive power of the formal logical system is restricted. As we will 

see in subsequent articles, logicians typically trade off among these properties. Failing to be 

aware of which of these properties applies to a formal logical system can lead to rather nasty 

surprises, especially in applied systems. 

 

 

 

  

Formal Logical System Type 
 

 

 

Property 

Truth 

Functional 

Propositional 

Logic 

First 

Order 

Monadic 

Predicate 

Logic 

First 

Order 

Polyadic 

Logic 

Higher 

Order 

Logics 

(in 

general) 

Untyped λ-

Calculus 

Simply 

Typed λ-

Calculus 

consistent Y Y Y N N Y 

semantically 

complete 
Y Y Y N N Y 

decidable Y Y N N N Y 

syntactically 

complete 
Y N N N Y N 

negation complete N N N N ?
18

 ? 

Turing complete N N N Y Y N 

 

 
 

There are many surprises in store when one starts to tinker with the structural properties of a 

formal logical system. In anticipation of results explored in future articles in this series on 

specific formal logical systems and their comparative properties, Figure 5.3 above
19

 will give the 

reader some idea of the trades-off between expressive power and other desirable properties for 

some common formal logical systems. It is worth noting that if a formal logical system provides 

a foundation for Turing complete (i.e., computationally complete) systems, that formal logical 

                                                 

 
18

 Negation completeness is considered meaningless for the λ calculus. 

 

Figure 5.3:  Properties of Some Important Formal Logical Systems 
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system will be a higher order logic. Higher order logics, including any possible formal logical 

system underlying Turing complete system are not generally consistent, nor are they decidable, 

syntactically (deductively) complete, or negation complete.  

 

We conclude this article with a few notes regarding properties of particular formal logical 

systems. The meta-mathematical properties discussed herein apply to most formal logical 

systems: a particular system with either have the property or it will not. However, the reader 

should not be mislead into thinking these are the only properties that differentiate systems. There 

are additional properties that we have not covered, primarily because they will not have a direct 

effect on the choice of a formal logical system as the foundation for a DBMS.  

 

Additionally, the reader is warned that particular types of formal logical systems may have 

properties that differentiate them in more detail. For example, there are sometimes further 

variations on validity that apply only to certain types of formal logical system. Given the 

background provided in this article, it should be relatively easy to understand those further 

specialized and perhaps subtle differentiations. And, once the relationship between these 

generally applicable properties to DBMSs is understood, we expect the reader will be equipped 

to determine how those properties affect the capabilities (or impossibility) of a DBMS founded 

on systems with or without those properties. 

 

Finally, having provided definitions of the terms consistency, completeness, and decidability, we 

will be able to provide an explanation of the powerful meta-theorems of Lowenheim-Skolem and 

Godel when we discuss specific logical systems in following articles. Further interrelationships 

between syntax and semantics will become apparent and will help us understand the impact of 

these theorems. 

 

http://www.alternativetech.com/
mailto:mcgoveran@AlternativeTech.com

